On antiramsey colorings and geometry of Banach spaces

Kamil Ryduchowski based on a joint work with Piotr Koszmider¹

Institute of Mathematics of the Polish Academy of Sciences Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

WINTER SCHOOL IN ABSTRACT ANALYSIS 2023

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

What is going to happen when you trap a set theorist in a Banach space?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

What is going to happen when you trap a set theorist in a Banach space?

He may start doing infinitary combinatorics and telling you it's geometry.

<□ > < @ > < E > < E > E 9 < 0<</p>

To conduct the experiment you will need:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

To conduct the experiment you will need:

• A problem from Banach space theory

<□ > < @ > < E > < E > E 9 < 0<</p>

To conduct the experiment you will need:

- A **problem** from Banach space theory
- A **bait**, e.g., an interesting combinatorial object (to lure a set theorist)

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

To conduct the experiment you will need:

- A **problem** from Banach space theory
- A **bait**, e.g., an interesting combinatorial object (to lure a set theorist)
- A set theorist (or two)

Definition

Let *X* be a Banach space and let $\delta > 0$. A set $A \subseteq X$ is

• δ -equilateral if $||x - y|| = \delta$ for every distinct $x, y \in A$.

Definition

Let *X* be a Banach space and let $\delta > 0$. A set $A \subseteq X$ is

- δ -equilateral if $||x y|| = \delta$ for every distinct $x, y \in A$.
- δ -separated if $||x y|| \ge \delta$ for every distinct $x, y \in A$.

Definition

Let *X* be a Banach space and let $\delta > 0$. A set $A \subseteq X$ is

- δ -equilateral if $||x y|| = \delta$ for every distinct $x, y \in A$.
- δ -separated if $||x y|| \ge \delta$ for every distinct $x, y \in A$.

Suppose *X* is a Banach space () with $dens(X) \ge \kappa$. Is there an equilateral $A \subseteq X$ of size κ ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition

Let *X* be a Banach space and let $\delta > 0$. A set $A \subseteq X$ is

- δ -equilateral if $||x y|| = \delta$ for every distinct $x, y \in A$.
- δ -separated if $||x y|| \ge \delta$ for every distinct $x, y \in A$.

Suppose *X* is a Banach space () with dens(*X*) $\geq \kappa$. Is there an equilateral $A \subseteq X$ of size κ ? Is there a $(1 + \varepsilon)$ -separated $A \subseteq S_X^2$ of size κ (for some $\varepsilon > 0$)?

$${}^{2}S_{X} = \{x \in X : ||x|| = 1\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Definition

Let *X* be a Banach space and let $\delta > 0$. A set $A \subseteq X$ is

- δ -equilateral if $||x y|| = \delta$ for every distinct $x, y \in A$.
- δ -separated if $||x y|| \ge \delta$ for every distinct $x, y \in A$.

Suppose *X* is a Banach space (having some nice property) with dens(*X*) $\geq \kappa$. Is there an equilateral $A \subseteq X$ of size κ ? Is there a $(1 + \varepsilon)$ -separated $A \subseteq S_X^2$ of size κ (for some $\varepsilon > 0$)?

$${}^{2}S_{X} = \{x \in X : ||x|| = 1\}$$

Let's have a peek on some known results.

Separable case

• Terenzi: There is an equivalent renorming of ℓ_1 without infinite equilateral sets.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Let's have a peek on some known results.

Separable case

- Terenzi: There is an equivalent renorming of ℓ_1 without infinite equilateral sets.
- Elton, Odell: The unit sphere of every infinite-dimensional Banach space contains an infinite (1 + ε)-separated set (for some ε > 0 depending on the space).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Many examples of nonseparable Banach spaces without uncountable equilateral sets,
- Koszmider, Wark: There is an equivalent renorming of $\ell_1([0,1])$ without infinite equilateral sets.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, **but no WLD examples so far.**
- Koszmider, Wark: There is an equivalent renorming of $\ell_1([0,1])$ without infinite equilateral sets.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, **but no WLD examples so far.**
- Koszmider, Wark: There is an equivalent renorming of $\ell_1([0,1])$ without infinite equilateral sets.
- Elton, Odell: The unit sphere of c₀(ω₁) doesn't contain uncountable (1 + ε)-separated sets for any ε > 0.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, **but no WLD examples so far.**
- Koszmider, Wark: There is an equivalent renorming of $\ell_1([0,1])$ without infinite equilateral sets.
- Elton, Odell: The unit sphere of c₀(ω₁) doesn't contain uncountable (1 + ε)-separated sets for any ε > 0.
- Hájek, Kania, Russo: The unit sphere of every nonseparable reflexive Banach space contains an uncountable $(1 + \varepsilon)$ -separated set.

Nonseparable case

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, **but no WLD examples so far.**
- Koszmider, Wark: There is an equivalent renorming of $\ell_1([0,1])$ without infinite equilateral sets.
- Elton, Odell: The unit sphere of c₀(ω₁) doesn't contain uncountable (1 + ε)-separated sets for any ε > 0.
- Hájek, Kania, Russo: The unit sphere of every nonseparable reflexive Banach space contains an uncountable $(1 + \varepsilon)$ -separated set.

The problem: how nice (how close to being reflexive) can nonseparable spaces without uncountable equilateral and $(1 + \varepsilon)$ -separated sets be?

Let $c : [\omega_1]^2 \to \{0, 1\}$ be a coloring without uncountable monochromatic sets.³ Put $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} : c[[A]^2] \subseteq \{0\}\}.$

³From this point on, a coloring means a coloring of pairs of countable ordinals without uncountable monochromatic sets. $(a \rightarrow a) = (a \rightarrow a) = (a$

Let $c: [\omega_1]^2 \to \{0, 1\}$ be a coloring without uncountable monochromatic sets.³ Put $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} : c[[A]^2] \subseteq \{0\}\}$. For $x \in c_{00}(\omega_1)$ let

$$\|x\|_c = \sup_{A \in \mathcal{A}_c} \left(\sum_{\alpha \in A} |x(\alpha)|^2\right)^{1/2}$$

³From this point on, a coloring means a coloring of pairs of countable ordinals without uncountable monochromatic sets. $(a \rightarrow a) = (a \rightarrow a) = (a$

Let $c: [\omega_1]^2 \to \{0, 1\}$ be a coloring without uncountable monochromatic sets.³ Put $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} : c[[A]^2] \subseteq \{0\}\}$. For $x \in c_{00}(\omega_1)$ let

$$\|x\|_c = \sup_{A \in \mathcal{A}_c} \left(\sum_{\alpha \in A} |x(\alpha)|^2\right)^{1/2}$$

Note that $||x||_{\infty} \le ||x||_{c} \le ||x||_{2}$.

³From this point on, a coloring means a coloring of pairs of countable ordinals without uncountable monochromatic sets. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle \langle$

Let $c: [\omega_1]^2 \to \{0, 1\}$ be a coloring without uncountable monochromatic sets.³ Put $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} : c[[A]^2] \subseteq \{0\}\}$. For $x \in c_{00}(\omega_1)$ let

$$\|x\|_c = \sup_{A \in \mathcal{A}_c} \left(\sum_{\alpha \in A} |x(\alpha)|^2\right)^{1/2}$$

Note that $||x||_{\infty} \leq ||x||_c \leq ||x||_2$. Let \mathcal{X}_c be the completion of $(c_{00}(\omega_1), ||\cdot||_c)$.

³From this point on, a coloring means a coloring of pairs of countable ordinals without uncountable monochromatic sets. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle \langle$

For disjoint sets A, B let $A \otimes B = \{\{a, b\} : a \in A, b \in B\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

For disjoint sets A, B let $A \otimes B = \{\{a, b\} : a \in A, b \in B\}$.

Definition

A coloring $c: [\omega_1]^2 \to \{0, 1\}$ is a strong *T*-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq [\omega_1]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B] = \{0\}$ and there are distinct $A', B' \in \mathcal{F}$ such that $c[A' \otimes B'] = \{1\}$.

(日) (日) (日) (日) (日) (日) (日) (日)

For disjoint sets A, B let $A \otimes B = \{\{a, b\} : a \in A, b \in B\}$.

Definition

A coloring $c: [\omega_1]^2 \to \{0, 1\}$ is a strong *T*-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq [\omega_1]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B] = \{0\}$ and there are distinct $A', B' \in \mathcal{F}$ such that $c[A' \otimes B'] = \{1\}$.

Theorem

• Galvin: If CH holds, then there is a strong *T*-coloring.

(日) (日) (日) (日) (日) (日) (日) (日)

For disjoint sets A, B let $A \otimes B = \{\{a, b\} : a \in A, b \in B\}$.

Definition

A coloring $c: [\omega_1]^2 \to \{0, 1\}$ is a strong *T*-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq [\omega_1]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B] = \{0\}$ and there are distinct $A', B' \in \mathcal{F}$ such that $c[A' \otimes B'] = \{1\}$.

Theorem

- Galvin: If CH holds, then there is a strong *T*-coloring.
- Kojman, Rinot, Steprāns: If non(M) = ω_1 , then there is a strong *T*-coloring.

For disjoint sets A, B let $A \otimes B = \{\{a, b\} : a \in A, b \in B\}$.

Definition

A coloring $c: [\omega_1]^2 \to \{0, 1\}$ is a strong *T*-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq [\omega_1]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B] = \{0\}$ and there are distinct $A', B' \in \mathcal{F}$ such that $c[A' \otimes B'] = \{1\}$.

Theorem

- Galvin: If CH holds, then there is a strong *T*-coloring.
- Kojman, Rinot, Steprāns: If non(M) = ω₁, then there is a strong *T*-coloring.
- Folklore?: Under $MA + \neg CH$ there is no strong *T*-coloring.

(日) (日) (日) (日) (日) (日) (日) (日)

Lemma

Let *c* be a strong *T*-coloring and let $\{x_{\alpha} : \alpha < \omega_1\}$ be an uncountable sequence of vectors with finite, pairwise disjoint supports such that for some r > 0 and every $\alpha < \omega_1$ we have $\|x_{\alpha}\|_c = r$. Then there are $\alpha < \beta < \omega_1$ such that $\|x_{\alpha} - x_{\beta}\|_c = \sqrt{2}r$ and there are $\xi < \eta < \omega_1$ such that $\|x_{\xi} - x_{\eta}\|_c = r$.

Lemma

Let *c* be a strong *T*-coloring and let $\{x_{\alpha} : \alpha < \omega_1\}$ be an uncountable sequence of vectors with finite, pairwise disjoint supports such that for some r > 0 and every $\alpha < \omega_1$ we have $\|x_{\alpha}\|_c = r$. Then there are $\alpha < \beta < \omega_1$ such that $\|x_{\alpha} - x_{\beta}\|_c = \sqrt{2}r$ and there are $\xi < \eta < \omega_1$ such that $\|x_{\xi} - x_{\eta}\|_c = r$.

Proposition (P. Koszmider, KR)

For every $\delta > 0$ there is $\varepsilon > 0$ such that for every $(1 - \varepsilon)$ -separated $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}_c}$ there are $\alpha < \beta < \omega_1$ such that $\|x_{\alpha} - x_{\beta}\|_c > \sqrt{2} - \delta$ and there are $\xi < \eta < \omega_1$ such that $\|x_{\xi} - x_{\eta}\|_c < 1 + \delta$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Theorem (P. Koszmider, KR)

Let *c* be a strong *T*-coloring. Then the space $(\ell_2(\omega_1), \|\cdot\|_2 + \|\cdot\|_c)$ doesn't contain any uncountable equilateral sets.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Theorem (P. Koszmider, KR)

Let *c* be a strong *T*-coloring. Then the space $(\ell_2(\omega_1), \|\cdot\|_2 + \|\cdot\|_c)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_c :

• is Hilbert generated and contains an isomorphic copy of ℓ_2 in every nonseparable subspace.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Theorem (P. Koszmider, KR)

Let *c* be a strong *T*-coloring. Then the space $(\ell_2(\omega_1), \|\cdot\|_2 + \|\cdot\|_c)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_c :

- is Hilbert generated and contains an isomorphic copy of ℓ_2 in every nonseparable subspace.
- doesn't admit any uncountable equilateral sets.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Theorem (P. Koszmider, KR)

Let *c* be a strong *T*-coloring. Then the space $(\ell_2(\omega_1), \|\cdot\|_2 + \|\cdot\|_c)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_c :

- is Hilbert generated and contains an isomorphic copy of ℓ_2 in every nonseparable subspace.
- doesn't admit any uncountable equilateral sets.
- doesn't admit any uncountable $(1 + \varepsilon)$ -separated sets in its unit sphere.

Theorem (P. Koszmider, KR)

Let *c* be a strong *T*-coloring. Then the space $(\ell_2(\omega_1), \|\cdot\|_2 + \|\cdot\|_c)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_c :

- is Hilbert generated and contains an isomorphic copy of ℓ_2 in every nonseparable subspace.
- doesn't admit any uncountable equilateral sets.
- doesn't admit any uncountable $(1 + \varepsilon)$ -separated sets in its unit sphere.

Theorem (P. Koszmider, KR)

Assume $MA + \neg CH$. Then for every coloring *c* the unit sphere of the space \mathcal{X}_c contains an uncountable $\sqrt{2}$ -equilateral set.

Expanding the horizons

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Let $c = (c_0, c_1) \colon [\omega_1]^2 \to 3 \times [\omega_1]^{<\omega}$ be a coloring.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let
$$c = (c_0, c_1) \colon [\omega_1]^2 \to 3 \times [\omega_1]^{<\omega}$$
 be a coloring. Put
 $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} \colon c_0[[A]^2] \subseteq \{0\}\}.$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Let
$$c = (c_0, c_1) \colon [\omega_1]^2 \to 3 \times [\omega_1]^{<\omega}$$
 be a coloring. Put
 $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} \colon c_0[[A]^2] \subseteq \{0\}\}.$

Moreover, let \mathcal{D}_c be the set of all finite families of consecutive pairs of countable ordinals $\{\xi_1, \eta_1\}, \ldots, \{\xi_k, \eta_k\}$ with $\xi_i < \eta_i$ for $1 \le i \le k$ and some $k \in \mathbb{N}$ such that for every $1 \le i < j \le k$ we have

$$c(\{\xi_i, \xi_j\}) = c(\{\eta_i, \eta_j\}) = (2, \{\xi_l, \eta_l : l < i\}).$$

٠

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Let
$$c = (c_0, c_1) \colon [\omega_1]^2 \to 3 \times [\omega_1]^{<\omega}$$
 be a coloring. Put
 $\mathcal{A}_c = \{A \in [\omega_1]^{<\omega} \colon c_0[[A]^2] \subseteq \{0\}\}.$

Moreover, let \mathcal{D}_c be the set of all finite families of consecutive pairs of countable ordinals $\{\xi_1, \eta_1\}, \ldots, \{\xi_k, \eta_k\}$ with $\xi_i < \eta_i$ for $1 \le i \le k$ and some $k \in \mathbb{N}$ such that for every $1 \le i < j \le k$ we have

$$c(\{\xi_i, \xi_j\}) = c(\{\eta_i, \eta_j\}) = (2, \{\xi_l, \eta_l : l < i\}).$$

For $x \in c_{00}(\omega_1)$ put

$$\mathbf{v}_{c}(x) = \sup_{D \in \mathcal{D}_{c}} \left(\sum_{\{lpha, eta\} \in D} |x(lpha) - x(eta)|^{2}
ight)^{1/2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Let \mathcal{Y}_c be the completion of $c_{00}(\omega_1)$ under the norm $||x|| = ||x||_c + v_c(x)$.

(日) (日) (日) (日) (日) (日) (日)

Let \mathcal{Y}_c be the completion of $c_{00}(\omega_1)$ under the norm $||x|| = ||x||_c + \nu_c(x)$.

Theorem (P. Koszmider, KR)

• For every coloring *c* the unit spheres of the spaces X_c , Y_c contain uncountable sets whose every two points are in the distance greater than 1 from each other.

(日) (日) (日) (日) (日) (日) (日)

Let \mathcal{Y}_c be the completion of $c_{00}(\omega_1)$ under the norm $||x|| = ||x||_c + \nu_c(x)$.

Theorem (P. Koszmider, KR)

- For every coloring *c* the unit spheres of the spaces X_c , Y_c contain uncountable sets whose every two points are in the distance greater than 1 from each other.
- Under MA + ¬CH the unit sphere of every space 𝒱_c admits an uncountable (1 + ε)-separated set.

Let \mathcal{Y}_c be the completion of $c_{00}(\omega_1)$ under the norm $||x|| = ||x||_c + \nu_c(x)$.

Theorem (P. Koszmider, KR)

- For every coloring *c* the unit spheres of the spaces X_c , Y_c contain uncountable sets whose every two points are in the distance greater than 1 from each other.
- Under MA + ¬CH the unit sphere of every space 𝒱_c admits an uncountable (1 + ε)-separated set.
- There is a coloring *c* such that every bounded operator $T: \mathcal{Y}_c \to \mathcal{Y}_c$ is a scalar multiple of the identity plus a separable range operator and the unit sphere of \mathcal{Y}_c contains an uncountable $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}+1}$ -equilateral set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

One can also consider A, D which are not defined by colorings, but share some similar properties.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

One can also consider A, D which are not defined by colorings, but share some similar properties.

Questions

• Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

One can also consider A, D which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?
- Is there a nonseparable reflexive Banach space without an uncountable equilateral set?

(日) (日) (日) (日) (日) (日) (日) (日)

One can also consider A, D which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?
- Is there a nonseparable reflexive Banach space without an uncountable equilateral set?
- Is there an equivalent renorming of *l*₂(*ω*₁) without uncountable equilateral sets?

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

One can also consider A, D which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?
- Is there a nonseparable reflexive Banach space without an uncountable equilateral set?
- Is there an equivalent renorming of *l*₂(*ω*₁) without uncountable equilateral sets?
- Is there an equivalent renorming of c₀(ω₁) without uncountable equilateral sets?

Final remarks

▲□▶▲□▶▲□▶▲□▶ □ のへで

Thank you for your attention!