On antiramsey colorings and geometry of Banach spaces

Kamil Ryduchowski
based on a joint work with Piotr Koszmider ${ }^{1}$

Institute of Mathematics of the Polish Academy of Sciences
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

Winter School in Abstract Analysis 2023
${ }^{1}$ We were supported by the NCN (National Science Centre, Poland) research grant no. 2020/37/B/ST1/02613

Experiment

What is going to happen when you trap a set theorist in a Banach space?

Experiment

What is going to happen when you trap a set theorist in a Banach space?

He may start doing infinitary combinatorics and telling you it's geometry.

Experiment

To conduct the experiment you will need:

Experiment

To conduct the experiment you will need:

- A problem from Banach space theory

Experiment

To conduct the experiment you will need:

- A problem from Banach space theory
- A bait, e.g., an interesting combinatorial object (to lure a set theorist)

Experiment

To conduct the experiment you will need:

- A problem from Banach space theory
- A bait, e.g., an interesting combinatorial object (to lure a set theorist)
- A set theorist (or two)

Problem

Definition

Let X be a Banach space and let $\delta>0$. A set $A \subseteq X$ is

- δ-equilateral if $\|x-y\|=\delta$ for every distinct $x, y \in A$.

Problem

Definition

Let X be a Banach space and let $\delta>0$. A set $A \subseteq X$ is

- δ-equilateral if $\|x-y\|=\delta$ for every distinct $x, y \in A$.
- δ-separated if $\|x-y\| \geq \delta$ for every distinct $x, y \in A$.

Problem

Definition

Let X be a Banach space and let $\delta>0$. A set $A \subseteq X$ is

- δ-equilateral if $\|x-y\|=\delta$ for every distinct $x, y \in A$.
- δ-separated if $\|x-y\| \geq \delta$ for every distinct $x, y \in A$.

Suppose X is a Banach space (
) with $\operatorname{dens}(X) \geq \kappa$. Is there an equilateral $A \subseteq X$ of size κ ?

Problem

Definition

Let X be a Banach space and let $\delta>0$. A set $A \subseteq X$ is

- δ-equilateral if $\|x-y\|=\delta$ for every distinct $x, y \in A$.
- δ-separated if $\|x-y\| \geq \delta$ for every distinct $x, y \in A$.

Suppose X is a Banach space () with $\operatorname{dens}(X) \geq \kappa$. Is there an equilateral $A \subseteq X$ of size κ ? Is there a $(1+\varepsilon)$-separated $A \subseteq S_{X}{ }^{2}$ of size $\kappa($ for some $\varepsilon>0)$?

$$
{ }^{2} S_{X}=\{x \in X:\|x\|=1\}
$$

Problem

Definition

Let X be a Banach space and let $\delta>0$. A set $A \subseteq X$ is

- δ-equilateral if $\|x-y\|=\delta$ for every distinct $x, y \in A$.
- δ-separated if $\|x-y\| \geq \delta$ for every distinct $x, y \in A$.

Suppose X is a Banach space (having some nice property) with dens $(X) \geq \kappa$. Is there an equilateral $A \subseteq X$ of size κ ? Is there a $(1+\varepsilon)$-separated $A \subseteq S_{X}{ }^{2}$ of size $\kappa($ for some $\varepsilon>0)$?

$$
{ }^{2} S_{X}=\{x \in X:\|x\|=1\}
$$

Problem

Let's have a peek on some known results.

Separable case

- Terenzi: There is an equivalent renorming of ℓ_{1} without infinite equilateral sets.

Problem

Let's have a peek on some known results.

Separable case

- Terenzi: There is an equivalent renorming of ℓ_{1} without infinite equilateral sets.
- Elton, Odell: The unit sphere of every infinite-dimensional Banach space contains an infinite $(1+\varepsilon)$-separated set (for some $\varepsilon>0$ depending on the space).

Problem

Nonseparable case

- Many examples of nonseparable Banach spaces without uncountable equilateral sets,
- Koszmider, Wark: There is an equivalent renorming of $\ell_{1}([0,1])$ without infinite equilateral sets.

Problem

Nonseparable case

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, but no WLD examples so far.
- Koszmider, Wark: There is an equivalent renorming of $\ell_{1}([0,1])$ without infinite equilateral sets.

Problem

Nonseparable case

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, but no WLD examples so far.
- Koszmider, Wark: There is an equivalent renorming of $\ell_{1}([0,1])$ without infinite equilateral sets.
- Elton, Odell: The unit sphere of $c_{0}\left(\omega_{1}\right)$ doesn't contain uncountable $(1+\varepsilon)$-separated sets for any $\varepsilon>0$.

Problem

Nonseparable case

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, but no WLD examples so far.
- Koszmider, Wark: There is an equivalent renorming of $\ell_{1}([0,1])$ without infinite equilateral sets.
- Elton, Odell: The unit sphere of $c_{0}\left(\omega_{1}\right)$ doesn't contain uncountable $(1+\varepsilon)$-separated sets for any $\varepsilon>0$.
- Hájek, Kania, Russo: The unit sphere of every nonseparable reflexive Banach space contains an uncountable $(1+\varepsilon)$-separated set.

Problem

Nonseparable case

- Many examples of nonseparable Banach spaces without uncountable equilateral sets, but no WLD examples so far.
- Koszmider, Wark: There is an equivalent renorming of $\ell_{1}([0,1])$ without infinite equilateral sets.
- Elton, Odell: The unit sphere of $c_{0}\left(\omega_{1}\right)$ doesn't contain uncountable $(1+\varepsilon)$-separated sets for any $\varepsilon>0$.
- Hájek, Kania, Russo: The unit sphere of every nonseparable reflexive Banach space contains an uncountable $(1+\varepsilon)$-separated set.

The problem: how nice (how close to being reflexive) can nonseparable spaces without uncountable equilateral and $(1+\varepsilon)$-separated sets be?

Bait

Let $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ be a coloring without uncountable monochromatic sets. ${ }^{3}$ Put $\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c\left[[A]^{2}\right] \subseteq\{0\}\right\}$.

[^0] ordinals without uncountable monochromatic sets.

Bait

Let $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ be a coloring without uncountable monochromatic sets. ${ }^{3}$ Put $\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c\left[[A]^{2}\right] \subseteq\{0\}\right\}$. For $x \in c_{00}\left(\omega_{1}\right)$ let

$$
\|x\|_{c}=\sup _{A \in \mathcal{A}_{c}}\left(\sum_{\alpha \in A}|x(\alpha)|^{2}\right)^{1 / 2}
$$

[^1] ordinals without uncountable monochromatic sets.

Bait

Let $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ be a coloring without uncountable monochromatic sets. ${ }^{3}$ Put $\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c\left[[A]^{2}\right] \subseteq\{0\}\right\}$. For $x \in c_{00}\left(\omega_{1}\right)$ let

$$
\|x\|_{c}=\sup _{A \in \mathcal{A}_{c}}\left(\sum_{\alpha \in A}|x(\alpha)|^{2}\right)^{1 / 2} .
$$

Note that $\|x\|_{\infty} \leq\|x\|_{c} \leq\|x\|_{2}$.

[^2] ordinals without uncountable monochromatic sets.

Bait

Let $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ be a coloring without uncountable monochromatic sets. ${ }^{3}$ Put $\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c\left[[A]^{2}\right] \subseteq\{0\}\right\}$. For $x \in c_{00}\left(\omega_{1}\right)$ let

$$
\|x\|_{c}=\sup _{A \in \mathcal{A}_{c}}\left(\sum_{\alpha \in A}|x(\alpha)|^{2}\right)^{1 / 2}
$$

Note that $\|x\|_{\infty} \leq\|x\|_{c} \leq\|x\|_{2}$.
Let \mathcal{X}_{c} be the completion of $\left(c_{00}\left(\omega_{1}\right),\|\cdot\|_{c}\right)$.
${ }^{3}$ From this point on, a coloring means a coloring of pairs of countable ordinals without uncountable monochromatic sets.

Bait

For disjoint sets A, B let $A \otimes B=\{\{a, b\}: a \in A, b \in B\}$.

Bait

For disjoint sets A, B let $A \otimes B=\{\{a, b\}: a \in A, b \in B\}$.

Definition

A coloring $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ is a strong T-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq\left[\omega_{1}\right]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B]=\{0\}$ and there are distinct $A^{\prime}, B^{\prime} \in \mathcal{F}$ such that $c\left[A^{\prime} \otimes B^{\prime}\right]=\{1\}$.

Bait

For disjoint sets A, B let $A \otimes B=\{\{a, b\}: a \in A, b \in B\}$.

Definition

A coloring $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ is a strong T-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq\left[\omega_{1}\right]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B]=\{0\}$ and there are distinct $A^{\prime}, B^{\prime} \in \mathcal{F}$ such that $c\left[A^{\prime} \otimes B^{\prime}\right]=\{1\}$.

Theorem

- Galvin: If CH holds, then there is a strong T-coloring.

Bait

For disjoint sets A, B let $A \otimes B=\{\{a, b\}: a \in A, b \in B\}$.

Definition

A coloring $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ is a strong T-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq\left[\omega_{1}\right]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B]=\{0\}$ and there are distinct $A^{\prime}, B^{\prime} \in \mathcal{F}$ such that $c\left[A^{\prime} \otimes B^{\prime}\right]=\{1\}$.

Theorem

- Galvin: If CH holds, then there is a strong T-coloring.
- Kojman, Rinot, Steprāns: If $\operatorname{non}(\mathcal{M})=\omega_{1}$, then there is a strong T-coloring.

Bait

For disjoint sets A, B let $A \otimes B=\{\{a, b\}: a \in A, b \in B\}$.

Definition

A coloring $c:\left[\omega_{1}\right]^{2} \rightarrow\{0,1\}$ is a strong T-coloring if given any uncountable pairwise disjoint $\mathcal{F} \subseteq\left[\omega_{1}\right]^{<\omega}$ there are distinct $A, B \in \mathcal{F}$ such that $c[A \otimes B]=\{0\}$ and there are distinct $A^{\prime}, B^{\prime} \in \mathcal{F}$ such that $c\left[A^{\prime} \otimes B^{\prime}\right]=\{1\}$.

Theorem

- Galvin: If CH holds, then there is a strong T-coloring.
- Kojman, Rinot, Steprāns: If $\operatorname{non}(\mathcal{M})=\omega_{1}$, then there is a strong T-coloring.
- Folklore?: Under $M A+\neg C H$ there is no strong T-coloring.

Results

Lemma

Let c be a strong T-coloring and let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$ be an uncountable sequence of vectors with finite, pairwise disjoint supports such that for some $r>0$ and every $\alpha<\omega_{1}$ we have $\left\|x_{\alpha}\right\|_{c}=r$. Then there are $\alpha<\beta<\omega_{1}$ such that $\left\|x_{\alpha}-x_{\beta}\right\|_{c}=\sqrt{2} r$ and there are $\xi<\eta<\omega_{1}$ such that $\left\|x_{\xi}-x_{\eta}\right\|_{c}=r$.

Results

Lemma

Let c be a strong T-coloring and let $\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$ be an uncountable sequence of vectors with finite, pairwise disjoint supports such that for some $r>0$ and every $\alpha<\omega_{1}$ we have $\left\|x_{\alpha}\right\|_{c}=r$. Then there are $\alpha<\beta<\omega_{1}$ such that $\left\|x_{\alpha}-x_{\beta}\right\|_{c}=\sqrt{2} r$ and there are $\xi<\eta<\omega_{1}$ such that $\left\|x_{\xi}-x_{\eta}\right\|_{c}=r$.

Proposition (P. Koszmider, KR)

For every $\delta>0$ there is $\varepsilon>0$ such that for every $(1-\varepsilon)$-separated $\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \subseteq S_{\mathcal{X}_{c}}$ there are $\alpha<\beta<\omega_{1}$ such that $\left\|x_{\alpha}-x_{\beta}\right\|_{c}>\sqrt{2}-\delta$ and there are $\xi<\eta<\omega_{1}$ such that $\left\|x_{\xi}-x_{\eta}\right\|_{c}<1+\delta$.

Results

Theorem (P. Koszmider, KR)

Let c be a strong T-coloring. Then the space $\left(\ell_{2}\left(\omega_{1}\right),\|\cdot\|_{2}+\|\cdot\|_{c}\right)$ doesn't contain any uncountable equilateral sets.

Results

Theorem (P. Koszmider, KR)

Let c be a strong T-coloring. Then the space $\left(\ell_{2}\left(\omega_{1}\right),\|\cdot\|_{2}+\|\cdot\|_{c}\right)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_{c} :

- is Hilbert generated and contains an isomorphic copy of ℓ_{2} in every nonseparable subspace.

Results

Theorem (P. Koszmider, KR)

Let c be a strong T-coloring. Then the space $\left(\ell_{2}\left(\omega_{1}\right),\|\cdot\|_{2}+\|\cdot\|_{c}\right)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_{c} :

- is Hilbert generated and contains an isomorphic copy of ℓ_{2} in every nonseparable subspace.
- doesn't admit any uncountable equilateral sets.

Results

Theorem (P. Koszmider, KR)

Let c be a strong T-coloring. Then the space $\left(\ell_{2}\left(\omega_{1}\right),\|\cdot\|_{2}+\|\cdot\|_{c}\right)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_{c} :

- is Hilbert generated and contains an isomorphic copy of ℓ_{2} in every nonseparable subspace.
- doesn't admit any uncountable equilateral sets.
- doesn't admit any uncountable $(1+\varepsilon)$-separated sets in its unit sphere.

Results

Theorem (P. Koszmider, KR)

Let c be a strong T-coloring. Then the space $\left(\ell_{2}\left(\omega_{1}\right),\|\cdot\|_{2}+\|\cdot\|_{c}\right)$ doesn't contain any uncountable equilateral sets. Moreover, the space \mathcal{X}_{c} :

- is Hilbert generated and contains an isomorphic copy of ℓ_{2} in every nonseparable subspace.
- doesn't admit any uncountable equilateral sets.
- doesn't admit any uncountable $(1+\varepsilon)$-separated sets in its unit sphere.

Theorem (P. Koszmider, KR)

Assume $M A+\neg C H$. Then for every coloring c the unit sphere of the space \mathcal{X}_{c} contains an uncountable $\sqrt{2}$-equilateral set.

Expanding the horizons

Let $c=\left(c_{0}, c_{1}\right):\left[\omega_{1}\right]^{2} \rightarrow 3 \times\left[\omega_{1}\right]^{<\omega}$ be a coloring.

Expanding the horizons

Let $c=\left(c_{0}, c_{1}\right):\left[\omega_{1}\right]^{2} \rightarrow 3 \times\left[\omega_{1}\right]^{<\omega}$ be a coloring. Put

$$
\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c_{0}\left[[A]^{2}\right] \subseteq\{0\}\right\}
$$

Expanding the horizons

Let $c=\left(c_{0}, c_{1}\right):\left[\omega_{1}\right]^{2} \rightarrow 3 \times\left[\omega_{1}\right]^{<\omega}$ be a coloring. Put

$$
\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c_{0}\left[[A]^{2}\right] \subseteq\{0\}\right\}
$$

Moreover, let \mathcal{D}_{c} be the set of all finite families of consecutive pairs of countable ordinals $\left\{\xi_{1}, \eta_{1}\right\}, \ldots,\left\{\xi_{k}, \eta_{k}\right\}$ with $\xi_{i}<\eta_{i}$ for $1 \leq i \leq k$ and some $k \in \mathbb{N}$ such that for every $1 \leq i<j \leq k$ we have

$$
c\left(\left\{\xi_{i}, \xi_{j}\right\}\right)=c\left(\left\{\eta_{i}, \eta_{j}\right\}\right)=\left(2,\left\{\xi_{l}, \eta_{l}: l<i\right\}\right)
$$

Expanding the horizons

Let $c=\left(c_{0}, c_{1}\right):\left[\omega_{1}\right]^{2} \rightarrow 3 \times\left[\omega_{1}\right]^{<\omega}$ be a coloring. Put

$$
\mathcal{A}_{c}=\left\{A \in\left[\omega_{1}\right]^{<\omega}: c_{0}\left[[A]^{2}\right] \subseteq\{0\}\right\}
$$

Moreover, let \mathcal{D}_{c} be the set of all finite families of consecutive pairs of countable ordinals $\left\{\xi_{1}, \eta_{1}\right\}, \ldots,\left\{\xi_{k}, \eta_{k}\right\}$ with $\xi_{i}<\eta_{i}$ for $1 \leq i \leq k$ and some $k \in \mathbb{N}$ such that for every $1 \leq i<j \leq k$ we have

$$
c\left(\left\{\xi_{i}, \xi_{j}\right\}\right)=c\left(\left\{\eta_{i}, \eta_{j}\right\}\right)=\left(2,\left\{\xi_{l}, \eta_{l}: l<i\right\}\right) .
$$

For $x \in c_{00}\left(\omega_{1}\right)$ put

$$
v_{c}(x)=\sup _{D \in \mathcal{D}_{c}}\left(\sum_{\{\alpha, \beta\} \in D}|x(\alpha)-x(\beta)|^{2}\right)^{1 / 2}
$$

Expanding the horizons

Let \mathcal{Y}_{c} be the completion of $c_{00}\left(\omega_{1}\right)$ under the norm $\|x\|=\|x\|_{c}+v_{c}(x)$.

Expanding the horizons

Let \mathcal{Y}_{c} be the completion of $c_{00}\left(\omega_{1}\right)$ under the norm $\|x\|=\|x\|_{c}+v_{c}(x)$.

Theorem (P. Koszmider, KR)

- For every coloring c the unit spheres of the spaces $\mathcal{X}_{c}, \mathcal{Y}_{c}$ contain uncountable sets whose every two points are in the distance greater than 1 from each other.

Expanding the horizons

Let \mathcal{Y}_{c} be the completion of $c_{00}\left(\omega_{1}\right)$ under the norm $\|x\|=\|x\|_{c}+v_{c}(x)$.

Theorem (P. Koszmider, KR)

- For every coloring c the unit spheres of the spaces $\mathcal{X}_{c}, \mathcal{Y}_{c}$ contain uncountable sets whose every two points are in the distance greater than 1 from each other.
- Under $M A+\neg C H$ the unit sphere of every space \mathcal{Y}_{c} admits an uncountable $(1+\varepsilon)$-separated set.

Expanding the horizons

Let \mathcal{Y}_{c} be the completion of $c_{00}\left(\omega_{1}\right)$ under the norm $\|x\|=\|x\|_{c}+v_{c}(x)$.

Theorem (P. Koszmider, KR)

- For every coloring c the unit spheres of the spaces $\mathcal{X}_{c}, \mathcal{Y}_{c}$ contain uncountable sets whose every two points are in the distance greater than 1 from each other.
- Under $M A+\neg C H$ the unit sphere of every space \mathcal{Y}_{c} admits an uncountable $(1+\varepsilon)$-separated set.
- There is a coloring c such that every bounded operator $T: \mathcal{Y}_{c} \rightarrow \mathcal{Y}_{c}$ is a scalar multiple of the identity plus a separable range operator and the unit sphere of \mathcal{Y}_{c} contains an uncountable $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}+1}$-equilateral set.

One can also consider \mathcal{A}, \mathcal{D} which are not defined by colorings, but share some similar properties.

One can also consider \mathcal{A}, \mathcal{D} which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?

One can also consider \mathcal{A}, \mathcal{D} which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?
- Is there a nonseparable reflexive Banach space without an uncountable equilateral set?

...even further

One can also consider \mathcal{A}, \mathcal{D} which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?
- Is there a nonseparable reflexive Banach space without an uncountable equilateral set?
- Is there an equivalent renorming of $\ell_{2}\left(\omega_{1}\right)$ without uncountable equilateral sets?

...even further

One can also consider \mathcal{A}, \mathcal{D} which are not defined by colorings, but share some similar properties.

Questions

- Is there an infinite dimensional reflexive Banach space without an infinite equilateral set?
- Is there a nonseparable reflexive Banach space without an uncountable equilateral set?
- Is there an equivalent renorming of $\ell_{2}\left(\omega_{1}\right)$ without uncountable equilateral sets?
- Is there an equivalent renorming of $c_{0}\left(\omega_{1}\right)$ without uncountable equilateral sets?

Final remarks

Thank you for your attention!

[^0]: ${ }^{3}$ From this point on, a coloring means a coloring of pairs of countable

[^1]: ${ }^{3}$ From this point on, a coloring means a coloring of pairs of countable

[^2]: ${ }^{3}$ From this point on, a coloring means a coloring of pairs of countable

