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Problem

Definition
Let X be a Banach space and let δ > 0. A set A ⊆ X is
• δ-equilateral if ∥x − y∥ = δ for every distinct x, y ∈ A.

• δ-separated if ∥x − y∥ ≥ δ for every distinct x, y ∈ A.

Suppose X is a Banach space (

having some nice property

) with
dens(X) ≥ κ. Is there an equilateral A ⊆ X of size κ?

Is there a
(1 +ε)-separated A ⊆ SX

2 of size κ (for some ε > 0)?
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SX = {x ∈ X : ∥x∥ = 1}
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Let’s have a peek on some known results.

Separable case

• Terenzi: There is an equivalent renorming of ℓ1 without
infinite equilateral sets.

• Elton, Odell: The unit sphere of every infinite-dimensional
Banach space contains an infinite (1 +ε)-separated set (for
some ε > 0 depending on the space).
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• Hájek, Kania, Russo: The unit sphere of every
nonseparable reflexive Banach space contains an
uncountable (1 +ε)-separated set.

The problem: how nice (how close to being reflexive) can
nonseparable spaces without uncountable equilateral and
(1 +ε)-separated sets be?



Problem

Nonseparable case

• Many examples of nonseparable Banach spaces without
uncountable equilateral sets, but no WLD examples so far.

• Koszmider, Wark: There is an equivalent renorming of
ℓ1([0, 1]) without infinite equilateral sets.

• Elton, Odell: The unit sphere of c0(ω1) doesn’t contain
uncountable (1 +ε)-separated sets for any ε > 0.
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Bait

Let c : [ω1]
2 → {0, 1} be a coloring without uncountable

monochromatic sets.3 Put Ac = {A ∈ [ω1]
<ω : c[[A]2] ⊆ {0}}.

For x ∈ c00(ω1) let

∥x∥c = sup
A∈Ac

(
∑
α∈A

|x(α)|2
)1/2

.

Note that ∥x∥∞ ≤ ∥x∥c ≤ ∥x∥2.
Let Xc be the completion of (c00(ω1), ∥ · ∥c).

3From this point on, a coloring means a coloring of pairs of countable
ordinals without uncountable monochromatic sets.
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• Folklore?: Under MA + ¬CH there is no strong T-coloring.
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• Kojman, Rinot, Steprāns: If non(M) = ω1, then there is a
strong T-coloring.

• Folklore?: Under MA + ¬CH there is no strong T-coloring.



Bait

For disjoint sets A, B let A ⊗ B = {{a, b} : a ∈ A, b ∈ B}.

Definition
A coloring c : [ω1]

2 → {0, 1} is a strong T-coloring if given any
uncountable pairwise disjoint F ⊆ [ω1]

<ω there are distinct
A, B ∈ F such that c[A ⊗ B] = {0} and there are distinct
A′, B′ ∈ F such that c[A′ ⊗ B′] = {1}.

Theorem

• Galvin: If CH holds, then there is a strong T-coloring.
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Lemma
Let c be a strong T-coloring and let {xα : α < ω1} be an
uncountable sequence of vectors with finite, pairwise disjoint
supports such that for some r > 0 and everyα < ω1 we have
∥xα∥c = r. Then there areα < β < ω1 such that
∥xα − xβ∥c =

√
2r and there are ξ < η < ω1 such that

∥xξ − xη∥c = r.

Proposition (P. Koszmider, KR)

For every δ > 0 there is ε > 0 such that for every
(1 −ε)-separated {xα : α < ω1} ⊆ SXc there areα < β < ω1
such that ∥xα − xβ∥c >

√
2 − δ and there are ξ < η < ω1 such

that ∥xξ − xη∥c < 1 + δ.
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Let c be a strong T-coloring. Then the space
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Moreover, the space Xc:
• is Hilbert generated and contains an isomorphic copy of ℓ2
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• doesn’t admit any uncountable (1 +ε)-separated sets in its
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Assume MA + ¬CH. Then for every coloring c the unit sphere
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Expanding the horizons

Let c = (c0, c1) : [ω1]
2 → 3 × [ω1]

<ω be a coloring.

Put

Ac = {A ∈ [ω1]
<ω : c0[[A]2] ⊆ {0}}.

Moreover, let Dc be the set of all finite families of consecutive
pairs of countable ordinals {ξ1, η1}, . . . , {ξk, ηk} with ξi < ηi
for 1 ≤ i ≤ k and some k ∈ N such that for every 1 ≤ i < j ≤ k
we have

c({ξi,ξ j}) = c({ηi, η j}) = (2, {ξl , ηl : l < i}).

For x ∈ c00(ω1) put

νc(x) = sup
D∈Dc

(
∑

{α,β}∈D
|x(α)− x(β)|2

)1/2

.
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Let Yc be the completion of c00(ω1) under the norm
∥x∥ = ∥x∥c + νc(x).

Theorem (P. Koszmider, KR)

• For every coloring c the unit spheres of the spaces Xc, Yc
contain uncountable sets whose every two points are in the
distance greater than 1 from each other.

• Under MA + ¬CH the unit sphere of every space Yc
admits an uncountable (1 +ε)-separated set.

• There is a coloring c such that every bounded operator
T : Yc → Yc is a scalar multiple of the identity plus a
separable range operator and the unit sphere of Yc

contains an uncountable
√

2+
√

5√
2+1

-equilateral set.
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...even further

One can also consider A, D which are not defined by colorings,
but share some similar properties.

Questions

• Is there an infinite dimensional reflexive Banach space
without an infinite equilateral set?

• Is there a nonseparable reflexive Banach space without an
uncountable equilateral set?

• Is there an equivalent renorming of ℓ2(ω1) without
uncountable equilateral sets?

• Is there an equivalent renorming of c0(ω1) without
uncountable equilateral sets?
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Final remarks

Thank you for your attention!


